Potential for Measuring the Information Field of Regional Policy in Southern Russia on the Internet | South-Russian Journal of Social Sciences
Potential for Measuring the Information Field of Regional Policy in Southern Russia on the Internet
PDF (Russian)
https://doi.org/10.31429/26190567-25-3-69-82
https://doi.org/10.31429/26190567-25-3-69-82

How to Cite Array

Runaev T.A. (2024) Potential for Measuring the Information Field of Regional Policy in Southern Russia on the Internet. South-Russian Journal of Social Sciences, 25 (3), pp. 69-82. DOI: 10.31429/26190567-25-3-69-82 (In Russian)
Submission Date 2024-06-07
Accepted Date 2024-08-15
Published Date 2024-09-30

Copyright (c) 2024 Тимофей Александрович Рунаев

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

The contemporary digitalization of politics carries an inherent risk of aggravating the influence of marginalized and extremist groups in the online domain, which disseminate destructive ideologies. In the southern regions of the Russian Federation, this issue assumes particular significance in light of the proximity of these territories to areas characterized by interethnic and interstate tensions. It is therefore necessary for regional political elites to consolidate their position in order to create and disseminate meaningful narratives that portray current events and processes in a positive light at the macro-­regional level. The objective of this article is to examine the structure and thematic content of the online activities of regional leaders in southern Russia. In order to achieve this, the author clarifies the concept of the information field of politics as a domain in which political actors construct a news agenda with the assistance of online resources and explain reality through a shared repertoire of images, cognitive schemas and narratives. Subsequently, the RStudio computer application, which is based on the R programming language, was used to web-scrape 11,000 recent posts from the official pages of regional leaders of Southern Russia in the “VKontakte” social network. Natural language processing methods, specifically text mining, were then applied to these posts. These methods included latent semantic analysis (LSA), sentiment analysis, content analysis with the author’s dictionary, and word match analysis. As a result, it can be observed that the online activity of regional leaders in southern Russia is currently characterized by a notable degree of consistency. This suggests the existence of a stable information field, with the semantic core centered on themes of assistance to newly-­established constituent entities of the Russian Federation, family support and the advancement of local urban environments.

Keywords

regional elite, public policy, digitalization of politics, text-mining, information security, online communication

References

  1. Akopova, T. S., Tikhonova, A. V. (2019). Primenenie indeksov v politmarketingovom issledovanii predvybornykh kampanii v sotsial’nykh setyakh. Na primere prezidentskoi kampanii v Rossiiskoi Federatsii 2018 g. [The Use of Indices in the Political Marketing Research of Election Campaigns in Social Networks. The Case of 2018 Presidential Campaign in the Russian Federation]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Politologiya. Religiovedenie [The Bulletin of Irkutsk State University. Series “Political Science and Religion Studies”], 30, 18–31. DOI: 10.26516/2073-3380.2019.30.18
  2. Anandarajan, M., Hill, Ch., Nolan, T. (2019). Practical Text Analytics. Maximizing the Value of Text Data. Cham: Springer.
  3. Bourdieu, P. (1993). Sociology in Question. London: Sage.
  4. Castells, M. (2004). Galaktika Internet [The Internet Galaxy]. Ekaterinburg: U-Faktoriya.
  5. Castells, M. (2015). Networks of Outrage and Hope: Social Movements in the Internet Age. Cambridge: Polity Press.
  6. Druzhinin, A. G. (2022). Novye sub”ekty Rossiiskoi Federatsii: spetsifika, trendy, potentsial razvitiya [New Subjects of the Russian Federation: Specifics, Trends, Development Potential]. Nauchnaya mysl’ Kavkaza [Scientific Thought of the Caucasus], 4, 62–74. DOI: 10.18522/2072-0181-2022-112-62-74
  7. Dudina, V. I. (2021). “Peresborka sotsiologii”: tsifrovoi povorot i poiski novoi teoreticheskoi optiki [“Reassembling Sociology”: Digital Turn and Searching for New Theoretical Optics]. Sotsiologicheskie issledovaniya [Sociological Studies], 47(11), 3–11. DOI: 10.31857/S013216250016829-4
  8. Fligstin, N. Makadam, D. (2022). Teoriya polei [Field Theory]. Moscow: Publishing House of the Higher School of Economics.
  9. Grimmer, J, King, G. (2011). General Purpose Computer-­assisted Clustering and Conceptualization. PNAS, 108(7), 2643–2650. DOI: 10.1073/pnas.1018067108
  10. Hanna, A. (2013). Computer-­aided Content Analysis of Digitally Enabled Movements. Mobilization: an International Quarterly, 18(4), 367–388. DOI: 10.17813/maiq.18.4.m1g180620x7n1542
  11. Kapshur, V. V., Baryshev, A. A., Chudinov, S. I. (2021). Reprezentatsiya radikal’nykh soobshchestv v rossiiskikh sotsial’nykh media: spetsifika kontenta i indeks aktivnosti [Representation of Radical Communities in Russian Social Media: Content Specifics and Activity Index]. Vestnik Tomskogo gosudarstvennogo universiteta [Bulletin of Tomsk State University], 467, 133–143. DOI: 10.17223/15617793/467/17
  12. Kocks, J. N. (2016). Political Media Relations Online as an Elite Phenomenon. Wiesbaden: Springer VS.
  13. Kon’kov, A. E. (2020). Tsifrovizatsiya politiki vs politika tsifrovizatsii [Digitalization of Politics vs Digitalization Policy]. Vestnik Sankt-­Peterburgskogo universiteta. Seriya 6. Filosofiya. Kul’turologiya. Politologiya. Pravo. Mezhdunarodnye otnosheniya [Bulletin of St. Petersburg University. Series 6. Philosophy. Cultural Studies. Political science. Right. International Relations], 13(1), 47–68. DOI: 10.21638/spbu06.2020.104
  14. Kryshtanovskaya, O. V. (2019). Elita v setyakh: novye formy obratnoi svyazi v tsifrovuyu epokhu [Elite in Networks: New Forms of Feedback in the Digital Age]. Tsifrovaya sotsiologiya [Digital Sociology], 2(2), 4–11. DOI: 10.26425/2658-347X‑2019-2-4-1
  15. Kwartler, T. (2017). Text Mining in Practice with R. Hoboken: John Wiley & Sons.
  16. Lindstedt, N. C. (2019). Structural Topic Modeling for social Scientists: a Brief Case Study with Social Movement Studies Literature, 2005–2017. Social Currents, 6(4), 307–318. DOI: 10.1177/2329496519846505
  17. Luke D. (2017). Analiz setei (grafov) v srede R. Rukovodstvo polzovatelya [Analysis of Networks (graphs) in the R Environment. User’s Guide]. Moscow: DMK Press.
  18. Martin, J. L. (2003). What is Field Theory? American Journal of Sociology, 109(1), 1–49. DOI: 10.1086/375201
  19. Miller, V. (2020). Understanding Digital Culture. London: SAGE Publications Ltd.
  20. Miroshnichenko I. V., Ryabchenko N. A. (2018). Setevaya ekosistema i innovacionnye praktiki v regionah Rossii [The Network Ecosystem and Innovative Practices in the Regions of Russia]. In L. V. Smorgunov (Ed.). Publichnaya politika: instituty, tsifrovizatsiya, razvitie: kollektivnaya monografiya [Public Policy: Institutions, Digitalization, Development: a Collective Monograph] (pp. 306–318). Moscow: Aspect Press.
  21. Miroshnichenko, I. V., Morozova, E. V. (2017). Setevaya publichnaya politika: kontury predmetnogo polya [Network Public Policy: Outlines of Subject Field]. Polis. Politicheskie issledovaniya [Polis. Political Studies], 2, 82–102. DOI: 10.17976/jpps/2017.02.06
  22. Reed, T. V. (2019). Digitized lives. Culture, Power and Social Change in the Internet Era. New York; London: Routledge.
  23. Savenkov, P. A., Ivutin, A. N. (2022). Metody analiza estestvennogo yazyka v zadachakh detektirovaniya povedencheskikh anomalii [Natural Language Analysis Methods for Detecting Behavioral Anomalies]. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Proceedings of Tula State University. Technical Sciences], 3, 358–366. DOI: 10.24412/2071-6168-2022-3-358-366
  24. Smorgunov, L. V. (2014). Setevye politicheskie partii [Network Political Parties]. Polis. Politicheskie issledovaniya [Polis. Political Studies], 4, 21–37. DOI: 10.17976/jpps/2014.04.03
  25. Wijermars, M. (2021). The Digitalization of Russian Politics and Political Participation. In D. Gritsenko, M. Kopotev, M. Wijermars (Eds.). The Palgrave Handbook of Digital Russia Studies (pp. 15–32). Cham: Palgrave Macmillan.
  26. Wilkerson J., Casas A. (2017). Large-scale Computerized Text Analysis in Political Science: Opportunities and Challenges. Annual Review of Political Science, 20, 529–544. DOI: 10.1146/annurev-­polisci‑052615-025542
  27. Zakharkin, R. A., Argylov, N. A. (2021). Inflyuensery kak mediaznachimye drugie: sovremennye trendy vtorichnoi sotsializatsii [Influencers as Media Significant Others: Modern Trends in Secondary Socialization]. Vlast’ [Vlast’], 29(6), 27–37. DOI: 10.31171/vlast.v29i6.8674
  28. Zimova, N. S., Fomin, E. V., Smagina, A. A. (2020). Sotsial’nye seti kak novyi kanal vzaimodeistviya obshchestva i vlasti [Social Networks as a New Channel of Interaction between Society and Government]. Nauchnyi rezul’tat. Sotsiologiya i upravlenie [Research Result. Sociology and Management], 6(2), 159–171. DOI: 10.18413/2408-9338-2020-6-2-0-11